EGEMAC
 Egyptian German Electrical Manufacturing Co.

Air insulated switch disconnectors type NAL, NALF, VersaRupter

Contents

Foreword
1 Introduction 4
2 Main product features 4
3 Functional description 5
Switches and main parts
4 Basic designs 6
5 Operating mechanisms 6
6Earthing switch 6
7.Fuse bases and recommended current limiting fuses 7
8Ordering codes 8
9Technical Specifications 9
Accessories
10Additional equipment for NAL/NALF switch disconnectors.. 1111.
Example of switch arrangement 13
12Ordering information 14
130perating mechanisms and optional accessories 21
14Motor drives 22
15Dimensional drawings 24

Indoor switch disconnector type NAL with earthing switch type E
\cdot

NAL-type switch disconnectors are based on a modular principle, which gives it a wide range of functionality. With a unique design that extinguishes electric arcs and enables high switching capacity, they represent an attractive solu- tion as a key breaking element for applications in enclosed
switchgear and transformer compact substations. In combination with type CEF current limiting fuses, NALF fuse switch disconnectors ensure control over the full range of overload and short-circuit currents.

The main areas of application of NAL/NALF switch disconnectors are as:
-Line switch disconnectors in medium-voltage networks,

- Switch disconnectors with fuses for the switching and protec- tion of:
-Distribution transformers
-Motors

NAL/NALF switch disconnectors are manufactured according to global quality and environmental standards and confirmed by ISO 9001 and ISO 14001 certificates. In addition, they are
98.64 percent recyclable.

The NAL/NALF brand is well known around the world, and more than 600,000 switches have been produced so far. It has been undergoing continuous development to satisfy users' demands.

1. Introduction

The switch disconnector system NAL/NALF is based on a modu- lar principle. The basic unit consists of a frame with insulators and current carrying parts. Two different types of operating mecha-
nisms, snap action mechanism type K or stored spring energy mechanism type A, can be mounted on the frame. Fuse bases type F, with or without fuse tripping mechanism, and an earthing switch type E/EB, suitableforbothdirectmounting and free standing components, complete the basic equipment of a switch disconnector. These modules can be easily configured according to customer expectations.
Accessories, such as shunt trip, under-voltage release, auxiliary switches, motor operation and various systems for manual opera- tion caneasily beadded.

2. Main product features

A NAL disconnector (which interrupts load currents up to 1,250 A) anda small fault-currentcircuitcombined with afusebase (F) and current limiting fuses (which break large short-circuit currents) cre- ate a NALFtype disconnector that provides protectionagainst a majority of fault types in a modern electric network. Both NAL/ NALF aredesigned in accordance with the requirementsof thefol- lowing standards: 60129, 60265, 60694, GOST 1516.3-96, GOST
17717-79, and CSA Standard No. C22.2, No. 193, and IEC 62271105, all of which consider switches for generaluse and ensure there is safe switching coordination between a switch dis- connector and a currentlimitingfuse.
Within the scope of the ANSI standard, NAL is known as VersaRupteranditmeets the requirements of ANSINo.C37.20.4. The selected styles of NAL/NALF switch disconnector arelisted ascertified by the Canadian Standards Association (CSA). Some VersaRupter styles are UL listed prior to their release to comply with the relevantsaftey requirements required in regions of theUnited States.

Fig. 1 Switchboard with NAL switch disconnector

Fig. 2 Structure of panel with NAL switch disconnector

Fig. 3 NALF 36 KV fuse switch disconnector

3. Functional description

Toensure correct operation for all relevant currents, the switch disconnector system NAL/NALF is equipped with a dual arcextinguishing system. As the current is being interrupted, the arc will be exposed to:
a) A current independent air blast which automatically starts at the correct time during the interrupting process. This is achieved by designing the insulators on theopening side as cylinders with pistons. Thepistonsare connectedtothemechanismin the same way as the moving contacts. The airblast therefore starts simultaneously with the contact movement (autopneu- matic air blast).
b) Acurrent dependent gas blast which occurs when the walls of the arcingnozzles areexposed to the hotarc.
During this process, large volumes of gas are released and the arc is effectivelycooled. Theconcentration of thedevelopedgas increases with increasing current. Theso-called Hart gas effect is therefore most important at high currents.
Awell balancedutilization of thesetwoeffectshas resulted in an arc extinguishing system with high reliability for all relevant cur- rents. Because of the autopneumatic airblast it will only be necessary to utilize the Hart gas effect for high currents. This gives an arcing system which can withstand a large number of operations without excessive wear. Consequently the NAL switches comply with the highest electrical performance classes E3 of IEC 60265-1 (for selected nominal voltages only). In addi- tion, voltage ratings are tested with a hundred operations under a load rated current of 630 A , which is a very important feature of the product, distinguishing it from other apparatus of this type on the market.

Fig. Efficiency of load current interruption in relation to breaking technique

Curve 1: Gas blast
Curve 2: Air blast
Curve 3: The resultant extinguishing effect = Curve $1+$ Curve 2

Fig. 4 Interruption

Fig. 5 Switch disconnector in open position

Fig. 6 Closing

Fig. 7 Switch disconnector in closed position
Fig. 7 Switch disconnector in closed position

Fig. 8 NALF

Fig 9. Mechanism A

Fig. 10 Mechanism K

4. Basic designs

NAL
The standard feature consists of chassis, insulators and current carrying parts with the following pole distance:
-12 kV - pole distance $150 \mathrm{~mm}, 170 \mathrm{~mm}$ and 210 mm
-17.5 kV - pole distance 170 mm and 210 mm
-24 kV - pole distance $170 \mathrm{~mm}^{*}, 235 \mathrm{~mm}$ and 275 mm
-36 kV - pole distance 360 mm

* - with insulating barriers

Rated currents are:

- 400, 630 and 1250 A up to 24 kV
- 630/800/1000 A for 36 kV

NALF
Is deliveredwith the samepoledistances as the standardfeature. Fuse base type F is delivered for installation on both the opening and pivot sides, with or without automatic tripping.
Afusebase with sixinsulatorscanalso bedeliveredseparately with some form of signal indication when a fuse blows or for installation on the pivot side of the switch.

5. Mechanisms

Type A with two springs
The opening spring is always charged before the wwitch can be closed by means of a closing spring. This means the opening spring is always charged in a closed switch, which in turn can be tripped immediately by hand, electrically or by a fuse-link striker system. Type K with one spring
Closing or opening the switch is performed by charging the spring past thedeadcentre.

A and K mechanisms may cooperate with motor drives.

6. Earthing switch

Quick earthing switch type E
Thistype of earthingswitch isequippedwith aquickspringmechanism. It can be mounted on the pivot side of the switch disconnector or on the fuse base when the latter is on the pivot side of theswitch.
Quick earthing switch type EB
Designed tobeanindependent assembly forbothsides of the disconnector.
Earthing switch type LCES
This type of switch is not equipped with a quick spring mechanism. It can be mounted on on the pivot side of the switch disconnector or on the fuse base when the latter is on the pivot side of the switch.

Fig. 11 Quick earthing switch type E

Mechanical interlocking between the switch disconnector and earthing switch is installed directly on apparatus' shafts. The left handshaftextension is required formechanical interlock installation.

7. Fuse bases and recommended current limiting fuses

 Fuse base type FVariablewithorwithout automatictripping of the switchby the fuse-linkstriker system. The fusebasecan bemounted onboth sides (i.e. openingsideor pivot sideof theswitch).

Recommended current limiting fuses for switch disconnector type NALF and fuse base with fuse tripping system
ABB fuse types CEF and CEF-S are recommended for use with the NALF switch disconnector with fuse tripping system. These fuses are reference fuses as defined in IEC 62271-105. The selection of fuses to protect distribution transformers with appro- priate assumptions about the working conditions and manner of selection are shown in the following tables.

Fig. 12 Quick type earthing switch type E mounted on fuse base

Transformer rated voltage [kV]	Transformer rated output (kVA)																	Fuse rated voltage [kV]
	2	5	75	100	125	160	200	503	1540	0	00	630	001	001	501	02		
	CEF Fuse-link In [A]																	
3	16	25	25	40	40	50	63	80	100	125								367.2
5	10	16	25	25	25	40	40	50	63	80	100	15						
6	6	16	16	25	25	25	40	40	50	63	80	100	125					
10	6	10	16	16	16	20	20	25	315	40	50	63	80	100	125			\underline{L}
12	6	6	10	16	16	16	20	20	25	40	40	50	63	80	100	15		
15	6	6	10	10	16	16	16	20	20	25	40	40	50	63	80	100	12	17.
20	6	6	6	10	10	16	16	16	20	20	25	315	40	50	63	80		2
24	6	6	6	6	10	10	16	16	16	20	20	25	40	40	50	63	8	2
30	6	6	6	6	6	10	10	16	16	16	25	25	25	40	40			3
36	6	6	6	6	6	10	10	16	16	16	25	25	25	40	40			

Transformer rated voltage [kV]	Transformer rated output (kVA)												Fuse rated voltage [kV]
										;			
	25	50,	75	100	125	160	200	250	315	400	500	63	
	CEF-S Fuse-link In [A]												
3	16	28	4	5									
5	1 C	16	2	4	4	50							
6	16	16	χ	2	4	4	50						I
10	16	16	16	2	2	2	4	4	50				
12	16	16	16	16	2	2	2	4	4	50			
15	16	16	16	16	16	16	$\underline{\sim}$	2	46	46			
20	16	16	1 C	1 C	16	16	16	2	25	4	46		2
24	16	1 C	1 C	1 C	16	16	16	2	2	2	4	4	

The table was calculated according to standards IEC 60787 and IEC 62271-105 (for operating voltages up to 24 kV) and IEC $4201990-11$ for 36 kV . The following trans- former work conditions were assumed:
Maximum long-lasting overload - 150\%
Magnetizing inrush current - $12 \times$ In during 100 ms
Transformer short-circuit voltage according to IEC 60076-5
Standard ambient working conditions of fuses

The table above details the rated current of a particular fuse link for a given line voltage and transformer rating. For different criteria, the fuse selection must be recalculated..

The given limits of the rated current of fuse are not mandatory for use with NAL/NALF switch disconnector without fuse tripping system. Rated current values of the corre- sponding fuses for these applications are given in the ABB catalogue titled "Fuses."

8. Types Designation

NAL									Switch disconnector
	F								with integrated fuse base ${ }^{11}$
		12							Rated voltage 12 kV
		17							Rated voltage 17.5 kV
		24							Rated voltage 24 kV
		36							Rated voltage 36 kV
			43						Rated current 400 A
			6						Rated current 630 A
			82)						Rated current 800 A
			102)						Rated current 1000 A
			123)						Rated current 1250 A
									without mechanism
				K					Snap action mechanism
				A					Stored spring energy mechanism
					150				Pole distance 12 kV
					170				Pole distance 12; 17.5 i $24^{4} \mathrm{kV}$
					210				Pole distance 12 i 17.5 kV
					235				Pole distance 24 kV
					275				Pole distance 24 kV
					360				Pole distance 36 kV
						R			Right hand side operation
						L			Left hand side operation ${ }^{5}$)
							E		Quick-make earthing switch ${ }^{6}$
							LCS		Earthing switch
								L,	For 24 kV with insulating barriers - left-hand operation only

${ }^{1)}$ additional information needed when placing the order:
-the length of fuse link
-mounting side - pivot or opening
-with or withour fuse tripping
${ }^{2}$) for 36 kV only
${ }^{3)}$ up to 24 kV only
${ }^{4}$) for 24 kV insulation barriers are used
${ }^{5)}$ for left hand operation shaft extension must be used
${ }^{6)}$ the earthing switch is normally delivered without mechanical interlocking, which must be specified separately. For 36 kV , earthing switch is provided as self standing only type EB.

General remarks for orders

- Normally, the switch disconnector is delivered with a fuse base for pivot side mounting. A fuse base for opening side mounting must be specified in the order.
- Closing or opening of the switch disconnector must be carried out by an operating coil. The coil must be ordered separately.
- For left-hand operation, a shaft extension must be used. The extension must be ordered separately.
- The earthing switch is normally delivered without mechanical interlocking. There is an additional charge for interlocking.
- The switch disconnector type NALF / NAL can be ordered at the same time, together with ABB current limiting fuse types CEF and CEF-S. Adequate ordering numbers for fuse links are available in the "Fuses" catalogue.

Ordering examples

- NAL 17-12K170LE

Switch disconnector for $17.5 \mathrm{kV} / 1250 \mathrm{~A}$ with latched snap action mechanism, poledistance 170 mm . Theswitchdiscon- nector is left-handoperatedandequippedwith aquick-make earthing switch.
NALF 24-6A235R
Switch disconnector for $24 \mathrm{kV} / 630 \mathrm{~A}$ with stored spring energy mechanism type A, equipped with fuse base on the pivot side, with fuse-tripping device, pole distance 235 mm , right-hand operated.

9. Technical specification

Switch disconnector type NAL

The switch disconnector complies with IEC standards 60129,60254 and 60694 concerning general purpose switches and IEC Stand- ards 420 and 62271-105 regarding correct co-operation between switch disconnector and fuse.

TABLE I. Main datal

Rated voltage Un	kVi	12			17.5			24			36		
Rated current	A	400	630	1250	400	630	1250	400	630	1250	630	800	800
Max. rated current	A	400	630	1150	400	630	1150	400	630	1150	630	800	1000
Short circuit making capacity \quad _	kA peak.	67	67	67	50	50	50	50	50	50	50	50	50
Peak withstand current	kA peak.	82	82	82	82	82	82	82	82	82	66	66	66
Short time current 1 sec. 2 sec. $I_{\text {th }}$ 3 sec.	kA eff.	$\begin{array}{r} 31.5 \\ 25 \\ 20 \end{array}$	$\begin{array}{r} 31.5 \\ 25 \\ 20 \end{array}$	$\begin{array}{r} 31.5 \\ 25 \\ 20 \end{array}$	31.5	31.5 25	31.5 25	31.5 25 16	31.5 25 16	31.5 25 16	25	25	25
Mainly active load breaking capacity ${ }^{17}$ (test duty 1 and 2, IEC 60265-1 (IEC 265))	A	400	630	1250	400	630	1250	400	630	1250	630	800	800
Rated cable/line charging breaking capacity IEC 60265-1(IEC 265))	A	150	150	150	100^{5}	100^{5}	100^{5}	80	80	80	45	45	45
Mainly inductive breaking capacity $\cos \varphi=0,15$	A	16	16	16	16	16	16	16	16	16	163)	163)	16^{3}
Rated earth fault breaking capacity IEC 60265-1(IEC 265) Earth fault breaking capacity, fig. 6 Capacitive breaking capacity, fig. 7	${ }_{\text {A }}$	$\begin{aligned} & 150 \\ & 90 \end{aligned}$	$\begin{aligned} & 150 \\ & 90 \end{aligned}$	$\begin{aligned} & 150 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \end{aligned}$	70 40	$\begin{array}{r} 75 \\ 31.5 \end{array}$	$\begin{array}{r} 75 \\ 31.5 \end{array}$	$\begin{array}{r} 75 \\ 31.5 \end{array}$	50	50	50
Max. breaking capacity in co-operation with fuses IEC 62271-105 (IEC 420 1990-11)	A	1600	1600		1600	1600		900	900		300*		
Max.fuse size ${ }^{2 l}$ In	A	125	125		125	125		80	80		40	40	
Power frequency withstand voltage 50 Hz 1 min .: to earth and between poles across isolating distance	kV kV	4242				$\begin{aligned} & 45 \\ & 60 \end{aligned}$		55			8088		
Impulse withstand voltage $1.2 / 50 \mu \mathrm{~s}$: to earth and between poles across isolating distance	$\begin{aligned} & \mathrm{kV}^{2} \\ & \mathrm{kV} \end{aligned}$	75			95			125				70	
Pole distance	mm	150, 170, 210			170, 210			1704), 235, 275			360		
Max. operating torque at: -closing K/A mech. -opening K/A mech.	$\begin{aligned} & \mathrm{Nm} \\ & \mathrm{Nm} \end{aligned}$	$\begin{gathered} 115-120 \mathrm{Nm} \\ \mathrm{~K} \text { mech. } 120 \mathrm{Nm} / \mathrm{A} \text { mech. } 3 \mathrm{Nm} \end{gathered}$									$\begin{gathered} 80-100 \mathrm{Nm} \\ \text { K mech. } 80-100 \mathrm{Nm} \\ \text { / A mech. } 3 \mathrm{Nm} \end{gathered}$		
Operating angle on the shaft	degrees	130									120		
Arc time	ms	40-60									60		

* - IEC 420 1990-11

1) At $\mathrm{In}=630 \mathrm{~A}, 100 \times \mathrm{CO}$. At $\mathrm{In}=1250 \mathrm{~A}, 20 \times \mathrm{CO}$
2) Power factor $=0,1$
${ }^{4)}$ With insulating barriers
${ }^{2)}$ Max. fuse size is ref. to time current characteristics for CEF
${ }^{5}$) At $18,2 \mathrm{kV}$

Earthing switch type E for NAL/NALF and type EB

Rated voltage	Un	kV	12	17.5	24	36
Peak withstand current ${ }^{11}$	$\mathrm{I}_{\text {dyn }}$	kA peak.	62/82	40/82	38/82	66
Short-circuit current 1 sec .			31.5	31.5	31.5	
2 sec .	$I_{\text {th }}$	kA eff.	25	20	20	25
3 sec .			20	16	16	
Short-circuit making capacity	$\mathrm{I}_{\text {ma }}$	kA peak	62/67	40/62.5	38/50	40
Power frequency withstand voltage 50 Hz 1 min .		kV	42	45	50	80
Impulse withstand voltage 1.2/50 $\mu \mathrm{s}$		kV	75	95	125	170
Pole distance		mm	150, 170, 210	170, 210	170, 235, 275	360

${ }^{1)}$ When fed from switch disconnector/earthing switch side.

LCES earthing switch type E for NAL/NALF and type EB

| Rated voltage |
| :--- | :--- |
| Peakwithstand current ${ }^{1)}$ |

${ }^{1)}$ When fed from switch disconnector/earthing switch side.

TABLE II. Technical data according to CSA C22.2 (NAL)

Type name		NAL12	NAL17,	NAL24	NAL36
Rated voltage	kV	4.16	13.8	27.6	34.5
Rated maximum voltage	kV	4.76	15	29.6	38
Rated current	A	600/1200	600/1200	600/1200	600/800
Impulse test voltage	kV	60	95	125	150
Power frequency withstand voltage	kV	28	38	60	70
Pole spacing	mm/inch	$\begin{array}{r} 150 / 5.9 \\ 210 / 8.25 \end{array}$	$\begin{gathered} 170 / 6.69 \\ 210 / 8.25 \\ 235 / 9.25^{*} \end{gathered}$	$\begin{gathered} 235 / 9.25^{*} \\ 275 / 10.8 \end{gathered}$	360/14.1
Momentary rating asymmetrical	kA eff.	40	40	40	40
Fault-closing rated current asymmetrical	kA eff.	40	40	40	30
Short time current symmetrical	kA eff./sec.	25/3	25/3	25/3	25/2

* Short time current symmetrical 25/2 sec.

TABLE III. Technical data according to ANSI C 37.20.4 (VersaRupter)

Type name		VR8.25	VR15	VR15 (61 kA)	VR17	VR27	VR38
Rated voltage	kV	4.73	12-13.8	13.8	12-16.5	23.9-24.9	34.5
Rated maximum voltage	kV	8.25	15	15	17	27	38
Rated current	A	200/600/1200	200/600/1200	600/1200	200/600/1200	200/600/1200	600/800
Impulse test voltage	kV	75	95	95	110	125	150
Power frequency withstand voltage	kV	26	36	36	50	60	80
Pole spacing	$\mathrm{mm} / \mathrm{inch}$	210/8.25	170/6.69,	235/9.25	235/9.25	275/10.8	360/14.1
Momentary rating asymmetrical	kA eff.	40	40	61	40	40	40
Fault-closing rated current asymmetrical	kA eff.	40	40	61	40	40	30
Short time current symmetrical	kA eff./sec.	25/3	25/3	40/3	25/2	25/3	25/2

TABLE IV. VersaRupter styles UL listed

Type name
Rated voltage
Rated maximum voltage
Rated current
Impulse test voltage
Power frequency withstand voltage
Pole spacing

Accessories

10. Additional equipment for NAL/NALF switch disconnectors

Fig. 13

Fig. 15
Shaftextension forleft-handoperation of

Fig. 16
Inslatedquatingleessforsuitd querdion

Fig. 17
Testubelirkadustalde

Fig. 18
Nanl quadiand Ecarsists f.
a) lonerpat
b upperpat
ocarectionral

Pleasedosenc

Thenadarisishaft cosesidpasstraghtesuitchfranthe neda-rismonterigt-handsictiotheleftsice Insteachaspeid extensionshaftismeededforqeraiondthenehtaisnfiranthele-

Olonarpatfar Ficanbeeq iprediuthdodingcoil fordl stande voltages

(${ }^{(}$

Fig. 19
ShunttripcoilcanbemountedonallA-mechanisms.This coilisavailable for the following voltages: $24,48,110,220 \mathrm{VDC}$ and $110,220 \mathrm{VAC}$. It shallduasbeca rectecinseriesvithana wiliayswitchuhichdscat nectstheshunttripcoilwhentheswitchisopen.

Fig. 20
 the earthing switch on the fuse base, the interlocking type (length) depends on the length of the fuse. Therefore, the fuse size must be stated.

Mechanical interlocking can also be used for switch disconnector and EB eathingswitch

\qquad

Fig. 21
Auxiliary switch can be mounted on all switch disconnectors, max. 8 NO and 8 NC and on all earthing switches except LCES, max. $4 \mathrm{NO}+4 \mathrm{NC}$ +corredionlit forassenthing

Fig. 22 VersaRupter switch disconnector for 8.25 kV
12. Ordering information

Switch disconnector without operating mechanism

Type	Rated voltage [kV]	Rated current [A]	Pole spac- Ordering ing $[\mathrm{mm}]$	Weight [kg]
NAL12-4	12	400	150 1YMX054150M0001	25
NAL 12-4	12	400	170 1YMX064170M0001	25
NAL 12-4	12	400	210 1YMX054950M0001	25
NAL 12-6	12	630	1501 YMXX54141M0001	25
NAL 12-6	12	630	170 1YMX064170M0002	25
NAL 12-6	12	630	210 1YMX054971M0001	25
NAL 12-12	12	1250	150 1YMX054152M0001	26
NAL 12-12	12	1250	170 1YMX064170M0003	26
NAL 12-12	12	1250	210 1YMX054952M0001	26
NAL 17-4	17.5	400	170 1YMX054153M0001	27
NAL 17-4	17.5	400	210 1YMX064210M0001	27
NAL 17-6	17.5	630	170 1YMX054144M0001	27
NAL 17-6	17.5	630	210 1YMX064210M0002	27
NAL 17-12	17.5	1250	170 1YMX054155M0001	28
NAL 17-12	17.5	1250	210 1YMX064210M0003	28
NAL 24-4	24	400	170 1YMX064171M0001	35
NAL 24-4	24	400	2351 1YMX054156M0001	35
NAL 24-4	24	400	275 1YMX054456M0001	35
NAL 24-6	24	630	170 1YMX064171M0002	35
NAL 24-6	24	630	235 1YMX054147M0001	35
NAL 24-6	24	630	275 1YMX054467M0001	35
NAL 24-12	24	1250	170 1YMX064171M0003	36
NAL 24-12	24	1250	$2351 \mathrm{YMXO54158M0001}$	36
NAL 24-12	24	1250	275 1YMX054458M0001	36
NAL 36-6	36	630	360 1YMX054310M0001	62
NAL 36-8	36	800	360 1YMX054311M0001	62
NAL 36-10	36	1000	360 1YMX054312M0001	62

Fig. 23 VersaRupter switch disconnector VR15 (61 kA)

Switch disconnector with operating mechanism (K)

Type	Rated R voltage [kV]	Rated current [A]	Pole spac- Ordering ing number $[\mathrm{mm}]$	Weight [kg]
MA 124<150F	$\underline{1}$	40	150MMKOFAOM0001	3
NAL 12-4K170R	12	400	170 1YMX065170M0001	30
NAL 12-4K210R	12	400	210 1YMX054910M0001	30
NAL 12-6K150R	12	630	150 1YMX054011M0001	30
NAL 12-6K170R	12	630	170 1YMX065170M0002	30
NAL 12-6K210R	12	630	210 1YMX054911M0001	30
NAL 12-12K150R	12	1250	1501 YMXX54012M0001	31
NAL 12-12K170R	12	1250	170 1YMX065170M0003	31
NAL 12-12K210R	12	1250	210 1YMX054912M0001	31
NAL 17-4K170R	17.5	400	170 1YMX054013M0001	32
NAL 17-4K24 170R	17.5	400	170 1YMX054013M0002	32
NAL 17-4K210R	17.5	400	210 1YMX065210M0001	32
NAL 17-4K24 210R	17.5	400	210 1YMX065210M0002	32
NAL 17-6K170R	17.5	630	170 1YMX054014M0001	32
NAL 17-6K24 170R	17.5	630	170 1YMX054014M0002	32
NAL 17-6K210R	17.5	630	210 1YMX065210M0006	32
NAL 17-6K24 210R	17.5	630	210 1YMX065210M0005	32
NAL 17-12K170R	17.5	1250	170 1YMX054015M0001	33
NAL 17-12K24 170R	17.5	1250	170 1YMX054015M0002	33
NAL 17-12K210R	17.5	1250	210 1YMX065210M0003	33
NAL 17-12K24 210R	17.5	1250	210 1YMX065210M0004	33
NAL 24-4K170R	24	400	170 1YMX065171M0001	40
NAL 24-4K235R	24	400	2351 1YMX054016M0001	40
NAL 24-4K275R	24	400	275 1YMX054410M0001	40
NAL 24-6K170R	24	630	170 1YMX065171M0002	40
NAL 24-6K235R	24	630	235 1YMX054017M0001	40
NAL 24-6K275R	24	630	275 1YMX054411M0001	40
NAL 24-12K170R	24	1250	170 1YMX065171M0003	41
NAL 24-12K235R	24	1250	235 1YMX054018M0001	41
NAL 24-12K275R	24	1250	275 1YMX054412M0001	41
NAL 36-6K360R	36	630	360 1YMX054313M0001	67
NAL 36-8K360R	36	800	360 1YMX054314M0001	67
NAL 36-10K360R	36	1000	360 1YMX054315M0001	67

Fig. 24 NALF 12-6 12 kV fuse switch disconnector with mechanism A

Switch disconnector with operating mechanism (A)

Type	Rated voltage [kV]	Rated current [A]	Pole Ordering spac- ing	Weight [kg]
NAL 12-4A150R	12	400	150 1YMX054040M0001	32
NAL 12-4A170R	12	400	170 1YMX067170M0001	32
NAL 12-4A210R	12	400	210 1YMX054920M0001	32
NAL 12-6A150R	12	630	$1501 \mathrm{YMX054041M0001}$	32
NAL 12-6A170R	12	630	170 1YMX067170M0002	32
NAL 12-6A210R	12	630	210 1YMX054921M0001	32
NAL 12-12A150R	12	1250	150 1YMX054042M0001	33
NAL 12-12A170R	12	1250	170 1YMX067170M0003	33
NAL 12-12A210R	12	1250	210 1YMX054922M0001	33
NAL 17-4A170R	17.5	400	170 1YMX054043M0001	34
NAL 17-4A24 170R	17.5	400	170 1YMX054043M0002	34
NAL 17-4A210R	17.5	400	210 1YMX067210M0001	34
NAL 17-4A24 210R	17.5	400	210 1YMX067210M0002	34
NAL 17-6A170R	17.5	630	1701 YMX 054044 M 0001	34
NAL 17-6A24 170R	17.5	630	170 1YMX054044M0002	34
NAL 17-6A210R	17.5	630	210 1YMX067210M0006	34
NAL 17-6A24 210R	17.5	630	210 1YMX067210M0005	34
NAL 17-12A170R	17.5	1250	$1701 \mathrm{YMX054045M0001}$	35
NAL 17-12 A24 170R	17.5	1250	170 1YMX054045M0002	35
NAL 17-12A210R	17.5	1250	$2101 \mathrm{YMXX67210M0003}$	35
NAL 17-12A24 210R	17.5	1250	210 1YMX067210M0004	35
NAL 24-4A170R	24	400	170 1YMX067171M0001	42
NAL 24-4A235R	24	400	2351 YMX054046M0001	42
NAL 24-4A275R	24	400	275 1YMX054420M0001	42
NAL 24-6A170R	24	630	170 1YMX067171M0002	42
NAL 24-6A235R	24	630	$2351 \mathrm{YMXO54047M0001}$	42
NAL 24-6A275R	24	630	275 1YMX054421M0001	42
NAL 24-12A170R	24	1250	$1701 \mathrm{YMX067171M0003}$	43
NAL 24-12A235R	24	1250	2351 YMX054048M0001	43
NAL 24-12A275R	24	1250	275 1YMX054422M0001	43
NAL 36-6A360R	36	630	360 1YMX054319M0001	68
NAL 36-8A360R	36	800	360 1YMX054320M0001	68
NAL 36-10A360R	36	1000	360 1YMX054321M0001	68

Fig. 25 NAL 12-6 12 kV switch disconnector with mechanism K

Switch disconnector with fuse base on pivot side, operating mechanism K, without fuse tripping

Type	$\begin{gathered} \text { Rated } \\ \text { volt- } \\ \text { age } \\ {[\mathrm{kV}]} \end{gathered}$	Rated current [A]	$\begin{array}{r} \text { Pole } \\ \text { spac- } \\ \text { ing } \\ {[\mathrm{mm}]} \end{array}$	Ordering number	Weight [kg]
NALF 12-4K150R	12	400	150	1YMX054070M0001	39
NALF 12-4K170R	12	400	170	1YMX068170M0001	39
NALF 12-4K210R	12	400	210	1YMX054925M0001	39
NALF 12-6K150R	12	630	150	1YMX054071M0001	39
NALF 12-6K170R	12	630	170	$1 \mathrm{YMX068170M0002}$	39
NALF 12-6K210R	12	630	210	1YMX054926M0001	39
	17.5	400	170	1YMX054072M0001	42
NALF 17-4K24 170R	17.5	400	170	1YMX054072M0002	42
NALF 17-4K210R	17.5	400	210,	$1 \mathrm{YMX068210M0001}$	42
NALF 17-4K24 210R	17.5	400	210	1 YMX068210M0003	42
NALF 17-6K170R	17.5	630	170	1YMX054073M0001	42
NALF 17-6K24 170R	17.5	630	170	1 YMX054073M0002	42
NALF 17-6K210R	17.5	630	210	1 YMX068210M0002	42
NALF 17-6K24 210R	17.5	630	210	1YMX068210M0004	$\underline{42}$
NALF 24-4K170R	24	400	170	1YMX068171M0001	51
NALF 24-4K235R	24	400	235	$1 \mathrm{YMX054074M0001}$	51
NALF 24-4K275R	24	400	275	1YMX054425M0001	51
NALF 24-6K170R	24	630	170	1YMX068171M0002	51
NALF 24-6K235R	24	630	235	$1 \mathrm{YMX054075M0001}$	51
NALF 24-6K275R	$\underline{24}$	630	275	1YMX054426M0001	$\underline{51}$
NALF $36-6 \mathrm{~K} 360 \mathrm{R}$	36	630	360	1YMXO54322M0001	68
NALF $36-8 \mathrm{~K} 360 \mathrm{R}$	36	800	360.	1YMX054323M0001	68
NALF 36-10K360R	36	1000	360	1 YMX 054324 M 0001	68

Switch disconnector with fuse base on opening side，operating
mechanism K ，without fuse tripping

Type	$\begin{gathered} \text { Rated } \\ \text { volt- } \\ \text { age } \\ {[\mathrm{kV}]} \end{gathered}$	Rated curr－ ent ［A］	Pole spac－ ing ［mm］	Ordering number	Weight ［kg］
MAF124＜150R	15	40	150	IMN3540001001	3
NAF124＜7aR	1	40.	17．	M 33681701001	3
NAF124EICR	12	400	276	M ${ }^{\text {a }}$	K
NAF12日4150R	12	63 C	150	MN35540V110001	3
MAF12G＜1ZR	1	63	17	IM33881701002	3
NAF12GKICR	12	63	216	IMN35428901001．	3
MAF174470R	17.5	400	17．	M ${ }^{\text {a }}$	4
NAF17484170R	17.5	40.	17.	IM 3 3540741002	4
MAF1742lar	17.5	400	216	MNX36821901001	4
NAF17424210R	17.5	40.	216	IM3368210 1003	4
NAF17647R	17.5	63	17．	M 3×35407311001	4
NAF 17－624170R	17.5	63 C	17	IMN3540731002	4
MAF17ERICR	17.5	63	276		4
NAF17624210R	17.5	63	216	MN3368270M1004	4
MAF2444712	2	40	17	M 1 3368171M001	5
MAF244835R	2	400	235	M ${ }^{\text {M }}$	5
NAF2442BSR	2	40	273	MVA3542510001	5
NAF24GKITR	2	63	17．	M ${ }^{\text {a }}$	5
NAF24日S35R	2	63	235	IMN354085，0001	5
NAF24GK2BR	2	63	273	MNKS54PEVNOOI	5
MAF36G36R	36	63	36.	MNKS543210001	6
NAF36－8360R	36	80.	36.	IMN3543231001．	G

Switch disconnector with fuse base on pivot side，operating
mechanism A，with fuse tripping

Type	Rated volt－ age ［kV］	$\begin{array}{r} \text { Rated } \\ \text { curr- } \\ \text { ent } \\ {[A]} \\ \hline \end{array}$	$\begin{array}{r} \text { Pole } \\ \text { spac- } \\ \text { ing } \\ {[\mathrm{mm}]} \end{array}$	Ordering number	Weight ［kg］
NAF124A50R	12	40.	156	MNAC54080000	4
NAF124 ${ }^{\text {M }}$	12	40	12	IM ${ }^{\text {a }}$	4
NAF124210R	12	40	210		4
NAF126A50R	12	63 C	150	IMVO54091N00］．	4
NAF126ATVR	12	63	17	IM ${ }^{\text {a }}$	4
NAF12642ICR	12	63 C	210	IM 30549881001	4
MAF174AICR	17.5	40	1ד	IMVC54BPAN00I	4
NAF1742417R	17．5	40	17	IMSKSAOPM 1002	4
NAF1742ICR	17.5	40	210	IM ${ }^{\text {a }}$	4
NAF174 ${ }^{\text {P4210R }}$	17.5	40.	216	M ${ }^{\text {a }}$	4
MAF176ATAR	17.5	63	1K	M ${ }^{\text {a }}$	4
NAF17642170R	17．5．	63	17	IMVOS40931002	4
NAF1764210R	17.5	630	210	IM ${ }^{\text {a }}$	4
NAF 176424210R	17.5	63	210	IMNOKPION004	4
MAF244AITR	2	40	17	IMNOOT71N00I	5
MAF244235R	2	40	235	IMVOFAOPM000，	5
NAF244P13R	2	40	275	IMVAOS4B5N00I．	5
NAF246ATR	2	63	17	IM ${ }^{\text {a }}$	5
NAF246435R	24	63	235		5
NAF246423R	2	63	273	IM 1054381001	5
MAF366436R	36	63	36	M 3 WOS 3881001	ス
NAF3684361	36	80	366	IM $2 \times 5432 \mathrm{NaOO}$	ス
NAF36－10A36R	36	100	36.	IMNOS4330100］．	Z

Fig． 26 NALF 36 kV fuse switch disconnector

Switch disconnector with fuse base on opening side, operating
mechanism A, with fuse tripping

Type	Rated volt- age [kV]	Rated current [A]	Pole spacing [mm]	Ordering number	Weight [kg]
NALF 12-4A150R	12	400	150	1YMX354090M0001	41
NALF 12-4A170R	12	400	170	1YMX370170M0001	41
NALF 12-4A210R	12	400	210	1YMX354935M0001	41
NALF 12-6A150R	12	630	150	1YMX354091M0001	41
NALF 12-6A170R	12	630	170	1YMX370170M0002	41
NALF 12-6A210R	12	630	210	1YMX354936M0001	41
NALF 17-4A170R	17.5	400	170	1YMX354092M0001	44
NALF 17-4A24 170R	17.5	400	170	1YMX354092M0002	44
NALF 17-4A210R	17.5	400	210	1YMX370210M0001	44
NALF 17-4A24 210R	17.5	400	210	1YMX370210M0003	44
NALF 17-6A170R	17.5	630	170	1YMX354093M0001	44
NALF 17-6A24 170R	17.5	630	170	1YMX354093M0002	44
NALF 17-6A210R	17.5	630	210	1YMX370210M0002	44
NALF 17-6A24 210R	17.5	630	210	1YMX370210M0004	44
NALF 24-4A170R	24	400	170	1YMX370171M0001	53
NALF 24-4A235R	24	400	235	1YMX354094M0001	53
NALF 24-4A275R	24	400	275	1YMX354435M0001	53
NALF 24-6A170R	24	630	170	1YMX370171M0002	53
NALF 24-6A235R	24	630	235	1YMX354095M0001	53
NALF 24-6A275R	24	630	275	1YMX354436M0001	53
NALF 36-6A360R	36	630	360	1YMX354328M0001	70
NALF 36-8A360R	36	800	360	1YMX354329M0001	70

Switch disconnector CSA without operating mechanism

Type	Rated volt- age [kV]	Rated current [A]	Pole spac- ing $[\mathrm{mm}]$	Ordering number	Weight [kg]
NAL 12-6 150	416	60	150	IMNO84141M001	Σ
NAL 12-12 150	416	120	15C	IMN0841540001	$\underline{2}$
NAL 12-6 210	416	60	216		2
NAL 12-12 210	416	120	216	IMNOSse5ancoul	$\underline{\chi}$
NAL 17-6 170	138	$6 \times$	17	IMN08414.001	Σ
NAL 17-12 170	138	120	17	IMN0841551007	28
NAL 17-6 210	138	60	216	MV1084210n002	2
NAL 17-12 210	138	120	216	IMNO82101003	2
NAL 17-6 235	138	60	235	IMNK18414,	3
NAL 17-12 235	138	120	235	IMNK1841580007	3
NAL 24-6 235	27.6	$6 \times$	235.	IMNO841410001	3
NAL 24-12 235	27.6	120	235	IMN08415810001	3
NAL 24-6 275	276	60	215	MNAO8461100]	3
NAL 24-12 275	276	120	27.	IMNO84580007	3
NAL 36-6 360	345	60	36.	M 1083810×1001	6
NAL 36-8360	345	80	36.	IMNO8317M001	6

Switch disconnector CSA with operating mechanism K

Type	$\begin{gathered} \text { Rated } \\ \text { volt- } \\ \text { age } \\ {[\mathrm{kVI}} \end{gathered}$	Rated current [A]	$\begin{array}{r} \text { Pole } \\ \text { spac- } \\ \text { ing } \\ {[\mathrm{mm}]} \end{array}$	Ordering number	Weight [kg]
NAL 12-6K 150R	416	60	15.	MNXO84017000]	3
NAL 12-12K 150R	416	1200	15	IM 30830121001	3
NAL 12-6K 210R	416	$6 \times$	27.		3
NAL 12-12K210R	4.16	1200	210	1YMX084912M000	3
NAL 17-6K 170 R	138	60	16	IMNO84014000	3
NAL 17-12K 170R	138	120	17	IMVO84015N00I	3
NA 1762417QR	138	60	17	IM 2084014002	3
NA 17-12<24172	138	1200	17	IM 30840151002	3
NAL 17-6K 210R	138	60	216	M 31085194002	3
NAL 17-12K 210 R	138	1200	216		3
NA 17624210R	138	60	216	M 3108210×1004	3
NA 17-12<24210R	138	1200	276	IM 10857101005	3
NAL 17-6K 235R	138	60	235	M 210840171001	4
NAL 17-12K 235R	138	120	235	IM 10840181001	4
NA 17624235R	138	60	235	IMVO8401TM002	4
NA 17-12<24235	13.8	1200	235	$1 \mathrm{YMX084018M000}$	4
NAL 24-6K235R	27.6	60	235	MVA18401710001	4
NAL 24-12K 235R	27.6	1200	235		4
NAL 24-6K 275R	27.6	60	27.		4
NAL 24-12K275R	27.6	1200	275	1YMX084412M000	4
NAL 36-6K 360R	345	60	36.	M 10836310001	6
NAL 36-8K360R	34.5:	800		1YMX084314M000	$\underline{6}$

Switch disconnector CSA with fuse base, operating mechanism K,
without fuse tripping

Type	$\begin{gathered} \text { Rated } \\ \text { volt- } \\ \text { age } \\ {[\mathrm{kV}]} \end{gathered}$	$\begin{array}{r} \text { Rated } \\ \text { curr- } \\ \text { ent } \\ {[A]} \\ \hline \end{array}$	$\begin{gathered} \text { Pole } \\ \text { spac- } \\ \text { ing } \\ {[\mathrm{mm}]} \end{gathered}$	Ordering number	Weight [kg]
NALF 12-6K 150R	416	60	150	MNX0840110001	3
NALF 12-6K 210R	416	60	216	IMVC342890101.	
NALF 17-6K 170R	138	60	17	M 1208407310008	
NAF 17624170R	138	60	17	IMNKO34083N001.	
NALF 17-6K 210R	138	$6 \times$	216	MV20882101000.	
NAF 17624210R	138	60	216	MVNOSS21010003.	
NALF 17-6K 235R	138	60	235	IMNCBAOFSNOCI.	
NALF 24-6K 235R	27.6	60	236	MNK184035001.	
NALF 24-6K 275R	27.6	60	23.	IM 20342810001.	
NALF 36-6K 360R	345	60	36.	IMV10843210001.	6
NALF 36-8K 360R	345	80	36.	IMV1034331000].	

Switch disconnector CSA with operating mechanism A

Type	$\begin{array}{\|c\|} \hline \text { Rated } \\ \text { volt- } \\ \text { age } \\ {[\mathrm{kVV}]} \\ \hline \end{array}$	Rated current [A]	$\begin{array}{r} \text { Pole } \\ \text { spac- } \\ \text { ing } \\ {[\mathrm{mm}]} \\ \hline \end{array}$	Ordering: number	Weight [kg]
NAL 12-6A 150R	416	60	150	MNAOB4O4INOL	3
NA 12-12A150R	416	120	15	MaCBHALINOT	3
NAL 12-6A 210R	416	60	210	m**849PINa	
MA 12-12ALIOR	416	20	2 C	M ${ }^{1} 10892$	
NAL 17-6A 170R	138	60	10	M	
NA 17-12A100	138	1200	17		
NA 17692410R	138	60	12	M	
NA 17-12A2417R	138	1200	1π	mucbiobmame	
NA 17GAJIOAR	138	60	216		
NA 17-12N2104R	138	120	210	masszianoo	
NA 176424210R	138	60	210	MWOBZLICNOLS	
NA.17-12A24219	138	1200	216	M ${ }^{\text {a }}$	
NAL 17-6A 235R	138	60	235	M ${ }^{\text {M }}$	4
NA 17-12N235R	138	1200	235	MUFO3048N00	4
NA 17602423sR	138	60	235	M	
NAL17-1242433R	138	1200	235	MNAOBHEASNOCE	4
NA 24642423R	27.6	60	235	IM*1810471005	4
NA24-12A2423s	27.6	120	235	MNK184048000	
NA 246A2423R	276	60	23		4
MA24-12A242Br	27.6	120	23	MUAOBH2TN00,	- 4
NAL 34-6A 360R	345	60	36	MVYO8B19N00	6
NAL 34-8A 360R	345	80	36	M	6

Switch disconnector CSA with fuse base, operating mechanism A, with fuse tripping

Type	$\begin{gathered} \text { Rated } \\ \text { volt- } \\ \text { age } \\ {[\mathrm{kV}]} \\ \hline \end{gathered}$	Rated current [A]	$\begin{array}{r} \text { Pole } \\ \text { spac- } \\ \text { ing } \\ {[\mathrm{mm}]} \end{array}$	Ordering number	Weight [kg]
NALF 12-6A 150R	4.16	600	150	1YMX084091M0001	41
NALF 12-6A210R	4.16	600	210	1YMX084936M0001	41
NALF 17-6A 170R	13.8	600	170	1YMX084093M0001	44
NALF 17-6A24 170R	13.8	600	170	1YMX084093M0002	44
NALF 17-6A 210R	13.8	600	210	1YMX080210M0002	44
NALF 17-6A24 210R	13.8	600	210	1YMX080210M0003	44
NALF 17-6A235R	13.8	600	235	1YMX084095M0001	53
NALF 24-6A24 235R	27.6	600	235	1YMX184095M0001	53
NALF 24-6A24 275R	27.6	600	275	1YMX084436M0001	53
NALF 36-6A 360R	34.5	600	360	1YMX084328M0001	70
NALF 36-8A 360R	34.5	800	360	1YMX084329M0001	70

Switch disconnector ANSI (VersaRupter) with operating mechanism K

Type	$\begin{array}{\|c\|} \text { Rated } \\ \text { volt- } \\ \text { age } \\ {[\mathrm{kV}]} \end{array}$	Rated current [A]	Pole spacing [mm]	Ordering number	Weight [kg]
VR 8.25-2K 150R	8.25	200	150	1YMX244040M1502	30
VR 8.25-6K 150R	8.25	600	150	1YMX244040M1506	30
VR 8.25-12K 150R	8.25	1200	150	1YMX244040M1510	31
VR 15-2K 170R	15	200	170	1YMX244041M1502	32
VR 15-6K 170R	15	600	170	1YMX244041M1506	32
VR 15-12K 170R	15	1200	170	1YMX244041M1510	33
VR 17-2K 235R	17	200	235	1YMX244042M1502	40
VR 17-6K 235R	17	600	235	1YMX244042M1506	40
VR 17-12K 235R	17	1200	235	1YMX244042M1510	41
VR 27-2K 275R	27	200	275	1YMX244043M1502	40
VR 27-6K 275R	27	600	275	1YMX244043M1506	40
VR 27-12K 275R	27	1200	275	1YMX244043M1510	41
VR 38-6K 360R	38	600	360	1YMX244005M1501	62
VR 38-8K 360R	38	800	360	1YMX244005M1502	62
VR 15-6K 235R (61 kA)	15	600	235	1YMX245881M1506	44
VR15-12K235R(61 kA)	15	1200	235	1YMX245881M1510	44

Switch disconnector ANSI (VersaRupter) with operating mechanism A

Type	$\left[\begin{array}{c} \text { Rated } \\ \text { volt- } \\ \text { age } \\ {[\mathrm{kV}]} \end{array}\right.$	Rated current [A]	$\begin{array}{r} \text { Pole } \\ \text { spac- } \\ \text { ing } \\ {[\mathrm{mm}]} \end{array}$	Ordering number	Weight [kg]
VR82-2A150R	82	20	$15 C$	IN*24885M501	3
VR82564150R	825	60	150	INN24883M1502	- 3
VR825-12A150R	82	1200	15	INX24834 1503	- 3
VR 15-2A 170R	15	20	1π	IM*24885M504	3
VR 15-6A 170R	15	60	1 T	IN*24883M150	3
VR15-12A170R		1200	171	1YMX245864M150	- 3
VR 17-2A 235R	1	20.	235	IN*24884M150	4
VR 17-6A 235R	1	60	235	M $\times 2.4885 \mathrm{M1508}$	- 4
VR17-12A235R		1200		1YMX245864M151	4
VR 27-2A 275R	2	20.	231	IM*24884, 1515	4
VR 27-6A 275R	2	6	28	M $\times 24883$ M 516	4
VR27-12A275R		1200		1YMX245864M151	4
VR 38-6A 360R	38	60.	36	M $\times 24585 \mathrm{M} 519$	6
VR38-8A360R	38	80		1YMX245864M152	($\underline{6}$
VR15GA3STRG1/4	15	60.	235	IM*248881M514	4
VR15-DAS3RGIlle		120		1YMX245881M151	$\underline{4}$

ANSI style switch disconnecter (VersaRupter) UL listed

Type	Rated voltage [kV]	Rated current	Pole spacing [mm/inch	K-mechanism (shaft length) [inch]	Ordering number	Catalogue number according to UL files	Weight [kg]
VR 8.25-2K-150R	8.25	200	150/5.9	3.77	1YMX323024M1503	244-040-512	30
VR 8.25-6K-150R	8.25	600	150/5.9	3.77	1YMX323024M1504	244-040-515	30
VR 15-2K-170R	15	200	170/6.69	3.77	1YMX323025M1503	244-041-512	32
VR 15-6K-170R	15	600	170/6.69	3.77	1YMX323025M1504	244-041-515	32
VR 15-2K-235R	15	200	235/9.25	5.26	1YMX323084M1503	244-042-513	32
VR 15-6K-235R	15	600	235/9.25	5.26	1YMX323084M1504	244-042-514	32
VR 15-6K-235R (61 kA)	15	600	235/9.25	3.77	1YMX888272M0003	245-881-506	44
VR 15-6K-235R (61 kA)	15	600	235/9.25	5.26	1YMX888272M0004	245-881-507	44
VR 15-12K-235R (61 kA)	15	1200	235/9.25	3.77	1YMX888272M0005	245-881-510	44
VR 15-12K-235R (61 kA)	15	1200	235/9.25	5.26	1YMX888272M0006	245-881-511	44

Fuse base type F for spring mechanism type A with fuse tripping, mounted on pivot side

Type	Rated voltage [kV]	Rated current [A]	Pole spacing [mm]	Ordering number	Weight [kg]
F12	1	40063 C	150		
F12	\underline{L}	400635	12		
F12	1	40065	21.	IMAOS4TENODI,	
F17	1.	400636	16	M MOE47980	
F 17 for LCES	1.	40063 C	1 C		
F17	1.	40063 C	216	MMACE4I98N001.	
F 17 for LCES	1.	400630	1 C	M 4883338 NOCOS .	
F 24	2	40065	17	M M	$\underline{1}$
F24	2	40066	235	M ${ }^{\text {MOS4I9N00I }}$	
F24 for LCES	2	400631	23	M 488833810001	
F24	2	40063	28	M	
F24 for LCES		400/63	275	1YMX888338M000	
F36	36		36.		

Fuse base type F for spring mechanism type A with fuse tripping, mounted on opening side

Type	Rated voltage [kV]	Rated current [A]	$\begin{array}{r} \text { Pole } \\ \text { spacing } \\ {[\mathrm{mm}]} \end{array}$	Ordering number	Weight [kg]
F 12	12	40063	$15 C$	MNAOSAZCOM1001	
F 12	12	40063	17	MNKCEAZ0N1001	
F 12	12	400631	210	MNXO548801001	
F 17	1	40063	17.	M ${ }^{\text {a }}$	ε
F 17	1	40063	216	MVACEAZOINDOOI	ε
F 24	2	40063	17	IMNC64204n0001	1
F24	2	40063	235	MNXOS4Z010001	1
F 24	2	40063	23	MNAOS448N000,	1

Fuse base with six insulators for spring mechanism type A
with fuse tripping

Type	Rated voltage \qquad	Rated current [A]	$\begin{gathered} \text { Pole } \\ \text { spacing } \\ {[\mathrm{mm}]} \end{gathered}$	Ordering number	Weight [kg]
F6 12	1	40063011250	150	TMAOSPROSN000:	
F612	1	$400 / 639120$	12	IMAOSRZONOCO	16
F612		$400 / 630 / 1$	$\underline{210}$	1YMX054974M000	$\underline{\square}$
F6 17	17.5	$400630 / 1250$	1 C		
F6 17	17.5	400/630/125	216		2
F6 24	2	400/630/125C	12	M M	2
F6 24	2	4006301230	23.	INAOSH2ONOUO	
F6 24	2	400/630/1230	28	M	

Fuse base type F for spring mechanism type K/A
without fuse tripping, mounted on pivot side

Type	Rated voltage $[\mathrm{kV}]$	Rated current $[\mathrm{A}]$	Polecing $[\mathrm{mm}]$		Ordering number
Weight					
$[\mathrm{kg}]$					

Fuse base type F for spring mechanism type K/A
without fuse tripping, mounted on opening side

Type	Rated voltage [kV]	Rated current [A]	$\begin{array}{\|} \text { Pole } \\ \text { spacing } \\ {[\mathrm{mm}]} \end{array}$	Ordering number	Weight [kg]
F 12	\underline{L}	40065	150	IMNO5490000	
F12	1	4006a	1]	InNACE490N000:	
F12	$\underline{1}$	4006	210	insostesincon	
F 17	17.5	40065	1π		
F 17	175	$400 / 6$	210	MaxCetiolindo	
F24	2	4096	1π	IM ${ }^{\text {a }}$	
F 24	2	40063	23	MNYOS4198n000	
F 24	$\underline{2}$	$400 / 6{ }^{\circ}$	2 S	IMAOSAGINODI	
F 36	36	63080	36.	INYOS433M000:	

Fuse base with six insulators for spring mechanism type A
without fuse tripping

Type	Rated voltage [kV]	Rated current [A]	Pole spacing $[\mathrm{mm}]$	Ordering number	Weight [kg]
F6 12	12	$400630 / 1250$	150		15:
F6 12	1	4006301250	170	M 210641851001	1
F6 12	1	$400 / 630 / 125$	210	1YMX054972M000	16:
F6 17	17.	400630/1250	17	MV1O54781001	19:
F6 17	17.5	400601250	210	MV10641801001	19
F6 24		$400630 / 1250$	17.	M $\times 10641810001$	27
F6 24		400630/1250	235.	IM $305478 / 10001$	215
F6 24		400/630/1250	27.	MNKOE47AN001	23

Fuse base with six insulators and double fuses per phase

| Type | Rated
 voltage
 $[\mathrm{kV}]$ | Rated
 current
 $[\mathrm{A}]$ | Pole
 spacing
 $[\mathrm{mm}]$ | Ordering
 number |
| :--- | ---: | ---: | ---: | ---: | | Weight |
| ---: |
| $[\mathrm{kg}]$ |

Earthing switch type E for NAL switch disconnector
without mechanical interlocking

Type	Rated voltage [kV]	Rated current [A]	$\begin{array}{r} \text { Pole } \\ \text { spacing } \\ {[\mathrm{mm}]} \\ \hline \end{array}$	Ordering number	Weight [kg]
E12	12	40063	15	M 120542350001	,
E12	1	40069	17	MNACS435000]	
E12	12	40063	216	IMNO54931000	,
E12	12	125	150	MVAOSTM 4000	,
ED	12	125	170		,
E12	12	125	210	IMNO5488N00]	
E17	17.5	40063	17	IMNOE4236000]	ε
E17	17.5	40063	216	IMNCE236100]	ε
E17	17.5	125	17	M 20542180001	ε
E17	17.5	125	216	IMNCER361005	ε
F24	2	40065	17	M ${ }^{\text {MCGES3, }} 10001$	\bigcirc
F24	2	40063	25		¢
F24	2	40063	23	IM 2054331000	\leq
F24	24	155	17.	MNACG43,	\bigcirc
F24	2	150	235	IMVAOST 219001	\bigcirc
F24	2	120	23	MNAOSASAN00]	\leqslant

Earthing switch type E for NAL switch disconnector
without mechanical interlocking, mounted on fuse base

Type	Rated voltage \qquad	Rated current [A]	Pole spacing [mm]	Ordering number	Weight [kg]
E 12	12	400/630	150	1YMX054225M0001	7
E 12	12	400/630	170	1YMX064225M0001	7
E12	1	400/630	210	1YMX054988M0001	7
E 17	17.5	400/630	170	1YMX054226M0001	8
E17	17.	400/630	210	1YMX064226M0001	8
E 24	24	400/630	170	1YMX064227M0001	9
E 24	24	400/630	235	1YMX054227M0001	9
E 24	24	400/630	275	1YMX054488M0001	9

Earthing switch type EB freestanding

Type	Rated voltage [kV]	Rated current [A]	$\begin{array}{r} \text { Pole } \\ \text { spacing } \\ {[\mathrm{mm}]} \end{array}$	Ordering number	Weight [kg]
B312	1	125	150		17.
WB12	12	155	12	INAOSTRONODT	17.
B12	1	1250	210	1YMX054271M000	17.
HB17	17.5	1550	12	MMOS427ama	\underline{K}
-317	17.5	1250	210	1YMX064272M000	$\underline{1}$
H324	2	155	235	IMNOS423N0001	$\underline{2}$
B324	2	1250	12	MMAOS4/3n000	$\underline{2}$
1324	24	1250	275	1YMX054274M000	$\underline{2}$
[836	36	80.	36	TMWOS48880w	3
$\begin{aligned} & \text { HB36 } \\ & \text { onpict sice } \\ & \text { NAL } \end{aligned}$	36	60880	36	M	3
EB 36 on quaingside NAL	36	63080	36	M 3340340009	3
H36 onpintside NALF	3	63080	36	MM334035M000	3
EB 36 on quaingside NALF	36	63080	36	M	3

Earthing switch type LCES for NAL switch disconnector
without mechanical interlocking

Type	Rated voltage [kV]	Rated current [A]	Pole spacing $[\mathrm{mm}]$	Ordering number	Weight [kg]
LCES E12	12	400/630	150	1YMX888325M0001	7
LCES E12	12	400/630	170	1YMX888325M0002	7
LCES E12	12	400/630	210	1YMX888325M0003	7
LCES E12	12	1250	150	1YMX888325M0011	7
LCES E12	12	1250	170	1YMX888325M0012	7
LCES E12	12.	1250	210	1YMX888325M0013	7
LCES E17	17.5	400/630	170	1YMX888325M0004	8
LCES E17	17.5	400/630	210	1YMX888325M0005	8
LCES E17	17.5	1250	170	1YMX888325M0014	8
LCES E17	17.5	1250	210	1YMX888325M0015	8
LCES E24	24	400/630	235	1YMX888325M0006	9
LCES E24	24	400/630	275	1YMX888325M0007	9
LCES E24	24	1250	235	1YMX888325M0016	9
LCES E24	24	1250	275	1YMX888325M0017	- $\quad 9$

Earthing switch type LCES for NAL switch disconnector
without mechanical interlocking, mounted on fuse base

Type	Rated voltage $[\mathrm{kV}]$	Rated current \qquad	$\begin{gathered} \text { Pole } \\ \text { spacing } \\ {[\mathrm{mm}]} \\ \hline \mathrm{m} \end{gathered}$	Ordering number	Weight [kg]
LCSEF12	12	400630	150	M M 188385 N00]	
1C5E-12	12	400630	17.	IM 18883251002	
LCSEF12		$400 / 63$	210	1YMX888325M002	
LCSEF7	1.	400630	17.	MM*88335M0024	
LCSEF17		$400 / 63$	210	1YMX888325M002	$\underline{\varepsilon}$
LCSE24	2	400630	23.	M 488835 M 1006	
LCSE24	24	400163	2	1YMX888325M002	

Earthing switch type LCES freestanding

Type	Rated voltage [kV]	Rated current [A]	Pole spacing [mm]	Ordering number	Weight [kg]
1C5SEBL	12	125	15	IMNKE3535M1031	1
LCESEBI2	12	1250	170	$1 \mathrm{YMX888325M003}$	$\underline{1}$
LCESEBI2	12	1250	210	$1 \mathrm{YMX888325M003}$	$\underline{1}$
1CISEBI7	1	1250	1入	IMNK888325M1034	14
1C15B317	13	1250	210	$1 \mathrm{YMX888325M003}$	$\underline{1}$
1CESEB24	2	1250	235	IMNAEES3510036	2
1C15B24	24	1250	275	$1 \mathrm{YMX888325M003}$	$\underline{2}$
LCESE36	36	80	364	IMN88838510088	3
LCSEB36 onpictsicle NAL	36	80	364	MMN8833510039	3
LCSEB36 onpinctside NALF	36	80	36	IMNKE8S351090	3

13. Mechanisms and additional accessories for NAL and VersaRupter switch disconnectors

Description	Type	Ordering number	Weight [kg]
K-mechanism (Fig.10)	K 12	1YMX054165M0001	5
K-mechanism	K 17	1YMX038658M0001	5
K-mechanism	K 24	1YMX054167M0001	5
Mechanizm K	K 36	1YMX054340M0001	5
A-mechanism (Fig. 9)	A 12	1YMX054173M0001	7
A-mechanism	$\begin{array}{r} \mathrm{A}-12 \\ \text { special version } \end{array}$	1YMX138725M0032	7
A-mechanism	A 17	1YMX054174M0001	7
A-mechanism	A 24	1YMX054175M0001	7
A-mechanism	A 36	1YMX051341M0001	7
Plastic cover forAmechanism		1YMX241351M0001	0.2

Hand operating mechanism type HE with accessories

Description/Type	Ordering number	Weight [kg]
Frot beaingfor H , withcacdricjoirt (Fig. 18 a)	MVAOS3231000,	1<
FratbeaingforF, vithat cadaricjoirt	M 210332331000.	Of
Frotbeaingfor\|Efarnatarqradion		1\%
Bevel gear for HE (Fig. 18 b)	IMNOS335100.	2-
QradirghardeforHE	INXOS32351000	2
Qradirghandefo-Hannured		2
Frat beeringfor HE , vithildalingcoi, 230VAFFig 180	TMVOS3394000,	2-
Frotbeaingfar: vithbadingail, 110~A	MNXO3394000,	2-
Frat bezirgfor H, withitidargad, 220VE	MNXOS398N000,	2-
Frat bezirgfor H, withitedingcol, 170VE	M 2×333981000	2-
Frotbeaingforl, vithbadingail, 48VE	MNXO3393100]:	2-
FratbeaingforF, vithbadingail, $24 \mathrm{VDC}$	MNXO33981001	$2]$
Spreadisfotdadingrai, 230NA	$1 \mathrm{YMX018958M001}$	OE
Spaecdistladingcil, 110VA	MNAO185880014	
Spaedisbalingai, 220VE		Q8
Spreadistadingai, 170VE	IM 100189881000	
Spreadishlodingai, 48V6		
Spreadistidinguil, 24 VE staft extension for lept-hand side operation F	TMVO18958001:	
-farpedstare 150 mm	IM 205435110001	15
-forpeledstarce210nmm	IM 1064531000	2
- for pole distance 170 mm (12 kV)	IMVAOS3581002.	2
-farpededstarce17Onm(17Xard24yy	M 1205455810001	2
-forpeledstarce 235 mm	M 1205459×100,	26
-forpeledstare2751mm		3]
-forpdedstare 360 mm	IM 2363281000	4
Canredionlit forsheftetersion assentling	MVN00054000,	O-
CareaingRed $3 / 4 \mathrm{l}=450 \mathrm{~mm}$	M M ${ }^{\text {a }}$	
CaredingRed 3/4'L=550rmm	MV1053346000.	OS
Coredingred $3 / 4$ ' $=50 \mathrm{~mm}$	M $\mathrm{M} \times 333451001 \mathrm{C}$	18
CorredingRel3/4'L= $\mathbf{1 3 0}$ mmrifig. 18 c)	MMNOS336100\%	15
CorretirgRe3 $3 / 4 \times 1=2000 \mathrm{~mm}$		2

Fig. 27 Transmission 90° complete

Mechanical interlocking for earthing switch*) (Fig. 20)

Description/Type	Ordering number	Weight [kg]
- on NAL 12	INXOETESNDEOI.	$2 \cdot$
- on NAL 17/24		3:
-on NALF 12. Fuse e $=292 \mathrm{~mm}$	M ${ }^{\text {a }}$	5
- on NALF 12. Fuse e $=192 \mathrm{~mm}$	M 12054880001	5
- on NALF 12. Fuse e $=442 \mathrm{~mm}$	M MOSLETM007.	6
- on NALF 12. Fuse e $=464 \mathrm{~mm}$	INXOS48850001.	6
- on NALF 17. Fuse e $=292 \mathrm{~mm}$	IM3054800007.	6
- on NALF 17. Fuse e $=442 \mathrm{~mm}$		7
- on NALF 24. Fuse e $=442 \mathrm{~mm}$ (eathingsuitchfrombuithsids)		6
-on NALF 24. Fuse e $=537 \mathrm{~mm}$	MNAOSLE3N001.	7.
- on NAL 36 EB onpictsict	INX34388N002,	5
- on NAL 36 EB ongreingside	IM334983N001,	3 E
- on NALF 36 EB onpina side	IM334983N003	9
- on NALF 36 EB nsingyivaride is mounted on thele for left-hand operation is needed.	IN*3439890004 the switch and therefore	7.

Aux. Switches for switch disconnectors and earthing switch (Fig.21)

Description/Type	Ordering number	Weight [kg]
Auxiliary switch:		
$-2 \mathrm{NO}+2 \mathrm{NC}$ for NAL(F) 12-24	1YMX054713M0001	0.9
$-4 N O+4 N C$ for NAL (F) 12-24	1YMX054714M0002	1.0
-8NO + 8NC for NAL(F) 12-24	1YMX054715M0001	1.1
- $2 \mathrm{NO}+2 \mathrm{NC}$ for E/EB 12-24	1YMX054716M0001	0.9
- 2NO + 2NC for E/EB 36	1YMX054716M0002	0.9
$-4 N O+4 N C$ for E/EB 12-24	1YMX054717M0001	1.0
$-4 N O+4 N C$ for E/EB 36	1YMX054717M0002	1.0
$-2 N O+2 N C$ for NAL (F) 36	1YMX240807M0005	0.9
$-4 N O+4 N C$ for NAL(F) 36	1YMX240807M0006	1.0
$-8 \mathrm{NO}+8 \mathrm{NC}$ for NAL(F) 36	1YMX054715M0001	1.1
Fixing materials for NAL(F) 36	1YMX240807M0004	0.1
Auxiliary contact for fuse interruption (Fig. 13)	1YMX053390M0001	0.1

14. Motor drives

Motor drives enable the remote opening and closing of switch disconnectors while at the same time they are prepared for the possibility of an emergency manual maneuver. A variety of models offers a selection of appropriate drive configurations.
Drives type UEMC40A1 and A2 are designed to be installed on the front wall of the panel (leftor rightside). They canopen and close switch disconnector mechanisms A and K, and are con- nected to the shaft of the switch disconnector by coupling ties

Shunt trip for A mechanism*)
(including fixing parts) (Fig. 19)

Description/Type	Ordering number	Weight [kg]
Coil 220 VAC without auxiliary switch	1YMX054740M0001	0.6
Coil 110 VAC without auxiliary switch	1YMX054741M0001	0.6
Coil 125 VAC without auxiliary switch	1YMX054741M0002	0.6
Coil 220 VDC without auxiliary switch	1YMX054742M0001	0.6
Coil 110 VDC without auxiliary switch	1YMX054743M0001	0.6
Coil 125 VDC without auxiliary switch	1YMX054743M0002	0.6
Coil 48 VDC without auxiliary switch		1YMX054744M0001
Coil 24VDC without auxiliary switch	1YMX054745M0001	0.6

*) In connection with shunt trip, auxiliary switch that breaks shunt trip circuit, must be used.

Spare coil for shunt trip for A mech

Description/Type	Ordering number	Weight [kg]
Cil 220VE	M 2054501001	Q6

and bevel gears. The UEMC40A series is not recommended for NAL 36-36 kV with A mechanism.
Standard drive for NAL/F (Fig. 29) can be mounted directly on the shaftorswitchdisconnectororonthesidewall of thepanel. It cooperates with springmechanismsAandK.
Tomount the standard drive forNAL/Fon the shaft of the dosconnector, suitable supports brackets areneeded (Fig. 28). The correct choice of brackets depends on the type of disconnector, drive andmotor assemblyas is shown in the tablebelow.

Fig. 28 Space brackets for mounting of standard motor drive for NAL/F

The motor unit is mechanically disconnected after each operation, which presents an opportunity to manually operate the switch disconnector. The drive can be operated locally via the buttons on the control box (Fig. 31) or remotely using radio control.
The control unit (Fig. 32) delivered with the motor drive contains the necessary elements such as contactors, connections, etc. and is

also equipped with an automatic fuse. It can be placed in a panel with the switch disconnector or in a separate box. Connection with thedrive isviaaplug-endedcable. Instead of the NMmotordrive, the UEMC40K3 type can be used (Fig. 30). The control system is then supplied in a separate order.

Fig. 30 K 3 motor drive

Fig. 29 Standard drive for NAL/F

Fig. 31 Operating box

Fig. 32 Control unit

Switch disconnector typeNAL12， 17.5 and 24 kV with mechansim

Type	A	A1	A2	A3	B	H	H1	H2	K	K1	M	N	N1	P	R	S	U	V
NAL 12－A／K P＝150 NAL	166	320	362	394	50	422	428	510	310	63	412	122	164	150	375	350	75	33
12－A／K P＝ 170 NAL 12－	166	320	362	394	50	422	428	510	310	63	45	122	164	170	375	390	75	33
A／K P＝210 NAL 17．5－	166	320	362	394	50	422	428	510	310	63	532	122	164	210	375	40	75	33
A／K P＝170 NAL 17．5－	225	375	418	511	98	534	577	600	441	87	45	122	164	10	500	395	50	18
A／K P＝210 NAL 24－A／K	225	$3 / 5$	418	511	98	534	577	600	441	87	532	122	164	210	500	$4 / 5$	90	18
$\mathrm{P}=235$ NAL 24－A／K	225	375	418	511	98	534	577	600	441	87	582	185	202	235	500	52	50	18
$\mathrm{P}=275$	225	375	418	511	98	534	577	600	441	87	65	185	202	275	500	605	90	18

＊1250 A：dimension A＋2 mm
Switch disconnector type NAL 24 kV with mechanism and insulation barriers

Fuse switch disconnector type NALF 12 kV with mechanism

Fuses		H1	H4	K2	K4	R1	R2
kV	length						
3.6/7.2	19.	84	716	72	598	27	50
	208	946	81	82.	69	38	150
12	208						
	4E 108		96.	975	846:	52	30
Type					M		S
NALF 12	$\mathrm{P}=150$				412		350
NALF 12	$\mathrm{P}=170$				452		390
NALF 12	$\mathrm{P}=210$				532		470

Fuse switch disconnector type NALF 17.5 kV with mechanism

Fuses		H1	H4	K2	K4	R1	R2
kV	length						
17.5	292	1060	895	925	828	375	125

Type	M	S
MAF 17 P $=170$	45	39
NAF 17 $P=210$	532	4π

Fuse switch disconnector type NALF 24 kV with mechanism and insulation barriers

Fuse switch disconnector type NALF 24 kV with mechanism

Fuses		H 1	H 4	K 2	K 4	R 1	R 2
kV	length						
24	44	108	104	98	98	48	2π

Type	M	S
NALF $24 \quad \mathrm{P}=170$	45	39
NALF $24 \mathrm{P}=235$	58.	52
NALF $24 \mathrm{P}=275$	68	69

Fuse switch disconnector type NALF 12, 17.5 and 24 kV Fuse base with 6 insulators and double fuses per phase

Fuses			H5
kV	length		
3.6/7.2	192		
	202		
12	292		
	42		
17.5	298		
	42		
24	42		
	53		801
Type	A5	A	P
MAF12, $\mathrm{P}=150$	173	48 C	15 C
NAF12, $\mathrm{P}=170$	173	4 C	1 C
NAF12, $\mathrm{P}=210$	173	4 CC	21 C
MAF17.5 $\mathrm{P}=170$	243	500	$1 \overline{10}$
NAF17.5, $\mathrm{P}=210$	243	500	276
NAF24 $\mathrm{P}=170$	243	50.	$1{ }^{1}$
NAF24 P=235	243	50.	23
NAF24 P=275	243	50	213

Earthing switch with making capacity type E12

Earthing switch with making
capacity type E 12
mounted on NAL12

Earthing switch with making capacitiy type E 12 mounted on fuse base F 12

Type	M1	M2	S	
E12	$\mathrm{P}=150$	681	428	350
$E 12$	$\mathrm{P}=170$	721	468	390
E12	$\mathrm{P}=210$	801	548	470

Earthing switch with making capacity typeE17.5

E17.5	M1	M2	
$\mathrm{P}=170$	721	468	3
$\mathrm{P}=210$	801	548	4

Earthing switch with making capacity type E24/EL24 P=170 with insulation barriers

Earthing switch with making type E24/EL24 mounted on fuse base F24 P=170
making type E24/EL24
mounted on NAL24 P=170

Type		M	N2	N3
E24	$\mathrm{P}=170$	808	166	17
EL24	$\mathrm{P}=170$	721	114	13

Earthing switch with

Earthing switch with making capacity type E24

Earthing switch with making capacity type E 24 mounted on NAL 24

Earthing switch
with making type E17.5
mounted on fuse base F 17.5

Earthing switch with making capacity type E 24 mounted on fuse base F 24

Earthing switch with making capacity type E 12, E 17.5 and E 24 mounted on fuse base with 6 insulators

Type		H2	H3	K3	M1	M2	N2	N3	P	S	1	W
E12	$\mathrm{P}=150$	208	393	100	681	428	112	139	150	350	375	60
E12	$\mathrm{P}=170$	208	393	100	721	468	112	139	170	390	375	60
E12	$\mathrm{P}=210$	208	393	100	801	548	112	139	210	470	375	60
E17.5	$\mathrm{P}=170$	208	432	100	721	468	112	139	170	395	375	60
E17.5	$\mathrm{P}=210$	208	432	100	801	548	112	139	210	395	375	60
E24	$\mathrm{P}=235$	351	575	100	933	598	161	174	235	525	500	120
E24	$\mathrm{P}=275$	351	575	100	1013	678	161	174	275	605	500	120

Separately mounted earthing switch with making capacity type EB

Type	A	H	K	R	U
EB12	245	231	175	$\underline{0}$	$\underline{4}$
$\underline{E B 17.5-24}$	$\underline{310}$	$\underline{245}$	\underline{X}	$\underline{175}$	$\underline{2}$

Type		M1	M2	S
E12	$P=150$	681	$4 \mathbf{R}$	38
$E 12$	$P=170$	721	468	39
$E 12$	$P=210$	891	54	4π

Earthing switch
types LCES E12
mounted on NAL 12

Earthing switch
types LCES EF12
mounted on fuse base F12

Earthing switch type LCES 17.5 kV

Type		$\frac{M 1}{2}$	$\frac{M 2}{458}$
E 17	$\mathrm{P}=170$	720	39
E 17	$\mathrm{P}=210$	801	548

Earthing switch types LCES E17 mounted on NAL 12

Earthing switch
types LCES EF17
mounted on fuse base F17

Earthing switch type LCES 24 kV

Separately mounted earthing switch type LCES EB36

Standard hand operating mechanizm HE

Arrangement of HEwith switch disconnector with 90° angle

1．Front bearing for HE，with cardanic joint 1YMX053233M0001
2．Bevel gear for HE 1YMX053362M0002
3．Bevel gear base 1YMX343036M0001
4．Rod connector．1YMX000053M0001
5．Connecting rod（L＝1，3 m）1YMX000004M0003
6．Connecting rod（L＝2 m）1YMX000004M0004

Mounting arrangement for
A and K mech．

Complete set for 90° transmission

Mounting arrangement for K
mech．only

Fuse switch disconnector with earthing switch NALF 12150 RE - example of arrangement

Fuses			H1	H2	H3	K2	R1
kV	A	e					
7.2	4-10	19	8иर	714	165	724	275
	$125-20$	22	94 C	$87 /$	176	82	$3 \sqrt{5}$
12	4-100	20.	9 9k	$8 / 2$	176	82	375
	$125-20$	ME	108	102	1313	$97 /$	55

NAL36kV

NAL 36 ＋EB 36

NALF 36 + EB on pivot side

Switch disconnector type VersaRupter 61 kA

NALF 36 + EB on opening side

Switch disconnector type VersaRupter with mechanizm

Type	A	A1	A2	A3	B	H	H1	H2	K	K1	M	\bar{N}	N1	mm/inch	R	S	U	
$4.73 \mathrm{kV} \mathrm{200/600/1200} \mathrm{~A}$	166	320	362	394	90	422	428	510	310	63	532	122	164	210/8.25	375	470	75	33
$12-13.8$ kV 200/600/1200 A	225	375	418	511	98	534	577	600	441	87	452	122	164	170/6.69	500	395	75	33
$12-16.8$ kV 200/600/1200 A	225	375	418	511	98	534	577	600	441	87	582	186	202	235/9.25	500	525	90	18
22.9-24.9 kV 200/600/1200 A	225	375	418	511	98	534	577	600	441	87	622	186	202	275/10.8	500	605	90	18
$34.5 \mathrm{kV} \mathrm{600/800} \mathrm{~A}$	370	530	75	850	123	700		870,	665		928	265	265	360/14.1	650	870		

*1250 A: dimension A+2 mm

Contact us

Address : 1 EL Kablat Street -Mattaria Area - Cairo - Egypt Tel : +20 2-2283-7873 +20 2-2282-9605 +20 2-2283-2951 Fax : +20 2-283-2535 +20 2-2283-7671 +20 2-2283-4406
URL : Egemac.com.eg
E-mail : sales_medium_V@egemac.com.eg

EGEMAC

Egyptian German Electrical Manufacturing Co.

